
Dias: Dynamic Rewriting of Pandas Code
Stefanos Baziotis

University of Illinois (UIUC)

Champaign-Urbana, U.S.A

sb54@illinois.edu

Daniel Kang

University of Illinois (UIUC)

Champaign-Urbana, U.S.A

ddkang@illinois.edu

Charith Mendis

University of Illinois (UIUC)

Champaign-Urbana, U.S.A

charithm@illinois.edu

ABSTRACT

In recent years, dataframe libraries, such as pandas have exploded

in popularity. Due to their flexibility, they are increasingly used in

ad-hoc exploratory data analysis (EDA)workloads. Theseworkloads
are diverse, including custom functions which can span libraries

or be written in pure Python. The majority of systems available

to accelerate EDA workloads focus on bulk-parallel workloads,

which contain vastly different computational patterns, typically

within a single library. As a result, they can introduce excessive

overheads for ad-hoc EDA workloads due to their expensive opti-

mization techniques. Instead, we identify program rewriting as a

lightweight technique which can offer substantial speedups while

also avoiding slowdowns. We implemented our techniques in Dias,

which rewrites notebook cells to be more efficient for ad-hoc EDA

workloads. We develop techniques for efficient rewrites in Dias,

including dynamic checking of preconditions under which rewrites

are correct and just-in-time rewrites for notebook environments.

We show that Dias can rewrite individual cells to be 57× faster com-

pared to pandas and 1909× faster compared to optimized systems

such as modin. Furthermore, Dias can accelerate whole notebooks

by up to 3.6× compared to pandas and 26.4× compared to modin.

1 INTRODUCTION

In recent years, dataframe-based libraries, such as pandas, have
become increasingly popular with users ranging from social scien-

tists to business analysts [43, 53]. This growth is driven by many

reasons, including the flexibility of such libraries, the ability to

work within a notebook environment, and the interoperability with

other libraries.

Due to the popularity of dataframe libraries, academic and indus-

trial work has focused on improving the scalability of pandas in
the context of bulk-parallel operations. For example, libraries includ-

ing modin [40], dask [34], and PySpark [12] focus on parallel or

distributed dataframes. Many of these libraries focus on scaling out

pandas across multiple servers, as pandas will fail if the dataframe

does not fit in main memory.

However, there has been an emerging class of important work-

loads that operate on a single machine, combined with ad-hoc func-

tions. For example, in our conversations with law professors at

Stanford University, we have found that provisioning and man-

aging distributed clusters is challenging and time-consuming for

social scientists. As a result, much of the work done by such so-

cial scientists is done on a single machine. Similarly, Kaggle and

Google Colab provide single-machine notebooks for data scien-

tists to explore datasets. Furthermore, many tasks require custom

user-defined functions (UDFs) that are not well suited to working

directly within the pandas API.

for i in range(1, 15):
lhs = DF_PH.loc[i, 'VendorID']
rhs = DF_PH.loc[i-1, 'VendorID']
if lhs == rhs:

counter += 1
else:

counter = 1
DF_PH.loc[i, 'discourse_nr'] = counter

Figure 1: LoopwhichAccesses Individual Elements (extracted

from a Kaggle notebook [7]). This loop can be hundreds of

times slower in bulk-parallel frameworks like modin, dask,
Koalas and PolaRS, which are not optimized for individual

accesses.

While these bulk-parallel dataframe libraries improve the hor-

izontal scalability of dataframes, as we show in this work, they

unfortunately can fail to accelerate a wide range of single-machine,
ad-hoc workloads. For example, modin, dask, and PySpark are all

2-200× slower than pandas for a range of operations: when interfac-
ing with numpy, looping over individual rows, and even for simple

operations like multiplying two columns (on a single machine). For

example, a simple loop (Figure 1) can be many hundreds of times

slower (see Section 6.4). Furthermore, all distributed dataframe li-

braries we are aware of do not maintain full pandas compatibility,

requiring domain experts to learn new libraries.

We propose an alternative approach to address the vertical scal-
ability of dataframe libraries: rewriting notebook cells to accelerate

dataframe computations by utilizing faster, but semantically equiv-

alent code sequences. To understand the potential for rewriting

notebook cells, consider the two cells in Figure 2. The first cell is

a simplified cell from a real-world, Kaggle notebook. The second

cell is an optimized cell with identical semantics. While identical

semantically, the second cell can run up to 1000× faster, showing
that simple rewrites of notebook cells can accelerate workloads.

A natural question that emerges is why can’t the users write

optimized code themselves. As witnessed in compilers, automatic

tools that accelerate code can reduce developer effort and improve

comprehensibility. Furthermore, severalrewrite rules in this paper

were not apparent to the authors (e.g., all the rules in Table 1), even

after devoting considerable time studying the internals of Python

and pandas. To understand how this translates to non-experts, there

are whole videos and articles dedicated to patterns for speeding up

pandas code via manual rewriting [8, 10, 13, 20, 46, 49]. Even then,

optimizing code correctly is challenging for non-expert users and

can lead to subtle bugs.

Stefanos Baziotis, Daniel Kang, and Charith Mendis

def weighted_rating(x, m=m, C=C):
v = x['vote_count']
R = x['vote_average']
return (v/(v+m) * R) + (m/(m+v) * C)

df.apply(weighted_rating, axis=1)

(a) Loop through rows (extracted from a Kaggle notebook [5]). This,

effectively, loops sequentially over each row, and the operations are

performed in the Python interpreter.

def weighted_rating(x, m=m, C=C):
v = x['vote_count']
R = x['vote_average']
return (v/(v+m) * R) + (m/(m+v) * C)

Pass the whole `df` directly.
weighted_rating(df)

(b) The function contains only column operations and thus can be

applied directly to the whole DataFrame.

Figure 2: A rewrite example where we avoid apply(). The
rewritten version, which uses vectorized, native execution,

can run up to 1000× faster.

To realize the vision of rewriting notebook cells transparently,

we propose Dias, a library that automatically rewrites notebook

cells via cell annotations. As we show, Dias can accelerate notebook

cells by up to 57× completely transparently to the user.

In order to rewrite cells, Dias must overcome several challenges.

First, it must operate within interactive time scales: the overhead of

rewriting cannot dominate cost savings. Second, the rewrites must

not change program semantics. This is particularly challenging in

the context of a dynamically-typed language like Python, which

has no precise formal semantics and liberal typing rules. In Python,

the types of variables or even classes of other modules can change

arbitrarily and there are no standard scoping rules.

We designed Dias’ rewrite engine with two components: a pat-

tern matcher and a rewriter with design decisions that specifically

address the aforementioned challenges. The rewrite engine is light-

weight, with a fast pattern matcher that can quickly match patterns

that we can rewrite into faster versions and a rewriter which emits,

or performs, necessary static and runtime precondition checks to

guarantee correctness, within interactive latencies.

We show that on real-world Kaggle notebooks, Dias can accel-

erate cells by up to 57× (1.18× geometric mean) and whole note-

books by up to 3.6× (1.29× geometric mean). We also compare Dias

with modin and show that it can be up to 26.4× faster for whole

notebooks (4.1× geometric mean). Furthermore, Dias can avoid

rewriting cells that cause slowdowns, resulting in overheads that

are only due to the pattern matcher. We show that these overheads,

even in the cases where cells are not rewritten, are below noise

thresholds. Finally, Dias uses no extra memory or disk capacity.

In summary, we make the following contributions.

(1) We identify program rewriting as a lightweight technique

to speed up pandas-heavy EDA workloads. We introduce

rewrite rules that can significantly speed up pandas code,
including non-trivial ones that cross library boundaries.

(2) We develop Dias to apply these rewrite rules automatically,

at runtime. Dias verifies whether applying a rule is correct

by either injecting checks in the code or by slicing the

execution and performing checks in between.

(3) We evaluate Dias on real-world notebooks and show that

it can speed up cells by up to 57× and notebooks by up to

3.6×, with almost no memory or disk overheads. We further

compare Dias with modin [40] and show that it can be up

to 26.4× faster for whole notebooks (4.1× geometric mean).

2 BACKGROUND

2.1 Setting

In this work, we focus on the broad class of workloads commonly

referred to as exploratory data analytics (EDA) [42]. In EDA work-

loads, the data is iteratively analyzed for interesting patterns. Since

the patterns of interest are unknown ahead of time, much of this

work is done interactively, in a notebook environment (e.g., Jupyter

notebooks, other REPLs) using a dataframe library. We focus on

pandas and related libraries in this work.

In one common setting, analysts are interested in analyzing large

datasets, which typically do not fit in main memory on a single

server. In order to accelerate these workloads, much effort from both

industry and academia has gone towards accelerating bulk-parallel
workloads.

Frameworks including modin [40] and dask [34] aim to acceler-

ate such workloads. They operate by providing APIs close to the

standard pandas API, distributing data across servers, and evaluat-

ing functions lazily. When working within these libraries, they can

accelerate workloads by up to 100× [40].

Unfortunately, these bulk-parallel libraries have several draw-

backs. In particular, these libraries were not designed for ad-hoc,
single-machine workloads.

Ad-hoc operations. The primary drawback of these libraries is

that they have poor support for ad-hoc operations outside of the

library API. For example, operations such as looping over rows,

column-wise operations that require intermediate materialization

for inspection (e.g., comparing a column to a constant), or inspecting

the first 𝑛 rows can be 30-1900× slower than standard pandas on a

single machine. For example, as we explain in Section 6.4, a simple

loop, shown in Figure 1, can be many hundreds of times slower.

Single-machine overheads. In addition to slowdowns for ad-

hoc operations, these libraries can add substantial memory over-

heads. We selected 20 random EDA notebooks from Kaggle (under

criteria described in Section 6.1), which had heavy pandas usage.
modin generally increased memory usage, with the peak memory

usage being up to 127× higher than native pandas. The peak mem-

ory usage increased 4.7× on average (geometric mean).

Dias: Dynamic Rewriting of Pandas Code

pd.Series(df['A'].tolist() + df['B'].tolist())

(a) Original: Concatenate Series by first turning them into lists.

Extracted from a Kaggle notebook [50].

pd.concat([df['A'], df['B']], ignore_index=True)

(b) Rewritten: Use a pandas-provided function for concatenation

Figure 3: Rewrite example that crosses library boundaries,

and thus cannot be performed by previous techniques. The

rewritten version can be up to 11× faster.

Usability. In discussions with social scientists and law profes-

sors at Stanford University and the University of California, Berke-

ley, we have found that learning new APIs is challenging and time-

consuming. In particular, these bulk-parallel libraries are not direct

drop-in replacements. To show this, we sampled 20 notebooks from

Kaggle at random (under criteria described in Section 6.1). Five

of these notebooks (25%) were unable to run when pandas was

replaced with modin.
Furthermore, setting up distributed clusters can be difficult in

these settings. As a result, the distributed speedups are difficult to

realize in the settings we focus on.

In this paper, we introduce program rewriting as an automatic

optimization technique for Python code that interfaces with pandas,
focusing on accelerating single-server, ad-hoc EDA workloads.

2.2 Rewriting as an alternative optimization

Rewriting, for optimization purposes, is the process of replacing

some part of code with a functionally equivalent but faster version.

Rewriting avoids the previously mentioned drawbacks of library-

based optimization systems. First, it inherently does not suffer from

a lack of API support because it is not a replacement for pandas
and it can leave the code untouched if it cannot handle it. Second,

rewriting is a lightweight technique incurring minimal overheads,

which scale proportionally only to the code, not the data.

Additionally, there are fundamental advantages Dias has over

library-based optimization approaches. The rewrite system is trans-

parent. When the user observes a speedup, they can always see the

code that the rewriter used. In other words, the user does not need

to understand the system to understand the cause of the speedup.

At the same time, the user’s code remains intact. Further, rewriting

has the benefit of being able to optimize across library boundaries.

For example, Dias can automatically perform the rewrite in Fig-

ure 3 (taken from a real-world notebook). The original code crosses

the library boundaries (twice!) as we move from pandas to Python

(by converting to a list) and then back to pandas. To perform this

rewrite, a tool needs to view all the code and understand semantic

equivalences and differences across library boundaries (e.g., pandas
and the host language, Python). This is not possible with optimiza-

tion approaches that purely aim at accelerating the pandas API.

Rewriting appears simple, but it can be challenging when per-

formed manually. There are many non-obvious rewrites that the

user may not be able to discover easily. For example, it might seem

df[['a', 'b']] = df['C'].str.split('(', expand=True)

(a) Splitting a pandas.Series using pandas.Series.str.split(). Ex-
tracted from a Kaggle notebook [1].

a = []
b = []
ls = df['C'].tolist()
for it in ls:

spl = it.split('(', 1)
a.append(spl[0])
b.append(spl[1] if len(spl) > 1 else None)

df['a'] = pd.Series(a, df['C'].index)
df['b'] = pd.Series(b, df['C'].index)

(b) Splitting a pandas.Series in pure Python

Figure 4: Splitting in pandas and Python. Surprisingly, the

pure Python implementation is up to 7× faster.

that the only way to make pandas code faster through rewriting is

by replacing it with other pandas code, or using a similar library

such as numpy. This has been reinforced over years of data scientists
being trained to remain within pandas/numpy as much as possible

because these use native, vectorized implementations and are thus

deemed to be much faster than pure Python. It might, then, be

surprising that moving out of pandas and into pure Python can

lead to significant speedups. One example is shown in Figure 4. The

task here is to split a Series of strings by the delimiter ’(’. The
code in Figure 4a (extracted from a Kaggle notebook) does it by

using a pandas-provided function. One would expect that this is

the best way to perform this operation. Nevertheless, the version in

Figure 4b is 3.5× faster. It moves from pandas to pure Python (by

converting df[’C’] to a Python list) and performs the operation

with a sequential Python loop (in our case studies in Section 6.5,

we explain why this version is faster).

It is unreasonable to expect general pandas users to comprehend

Python, pandas, and numpy to such an extensive level to be able

to discover such equivalent versions and evaluate their relative

performance. Second, even if the user succeeds in these tasks, the

rewritten version can be significantly harder to write and read,

as is evident from Figure 4. This can further lead to correctness

concerns about the rewrite. Third, manual rewriting breaks the

library abstraction. In the original code of Figure 4, the user has

to think only of what split() does. But, to come up with the

rewritten version, this abstraction’s veil has to be removed as the

user needs to think of how to implement it.

These issues motivated us to build Dias, a system that performs

such rewrites automatically, by guaranteeing correctness and with

minimal overhead. Section 3 provides an overview of Dias.

3 DIAS OVERVIEW

We now present the high-level architecture of Dias, a rewrite

engine that automatically applies rewrite rules to improve the per-

formance of ad-hoc EDA workloads.

Stefanos Baziotis, Daniel Kang, and Charith Mendis

Jupyter Cell Source

print(...)
a, b = df['C'].str.split('(', 1, expand=True)

Pattern Matcher

print(...)

a, b = df['C'].str.split('(', 1, expand=True)

Rewrite the Code

print(...)
ser = df['C']
if isinstance(ser, pd.Series): # precondition
Rewritten
a, b, ls = [], [], ser.tolist()
for it in ls:

spl = it.split('(', 1)
a.append(spl[0])
b.append(spl[1] if len(spl) > 1 else None)

a = pd.Series(a, ser.index)
b = pd.Series(b, ser.index)

else:
Original
a, b = ser.str.split('(', n=1, expand=True)

Execute the Rewritten Code

ipython.run_cell(new_source)

Figure 5: Dias overview. Dias identifies patterns in the source

code, which it rewrites using its rewriter. The rewriting is

not always valid. Dias preserves the original semantics by

inserting checks in the code (shown here), or by slicing the

execution and performing checks in between.

We designed Dias with two high-level components. First, Dias’

syntactic pattern matcher matches the input code against the left-

hand side (LHS) parts of the rewrite rules and validates the syn-

tactic preconditions. The second component is a rewriter, which
checks the runtime preconditions of the rewrite rules and on suc-

cess, rewrites the code to the right-hand side (RHS) version and

executes it. We show a high-level overview in Figure 5.

We have several desiderata for Dias: it should facilitate applying

complex rewrites automatically with minimal overhead. Further, it

should guarantee that the rewritten code is semantically equivalent

to the original code. There are two main challenges in achieving

these goals.

Preserving Correctness of the Rewrites. Dias needs to emit

dynamic checks to ascertain whether runtime preconditions are

preserved. Some of these checks are quite involved, for example,

df['A'].sort_values().head(n=5)

(a) Select the 5 smallest elements by sorting first. Extracted from a

Kaggle notebook [35].

df['A'].nsmallest(n=5)

(b) Select the 5 smallest elements directly. This avoids sorting.

Figure 6: Selecting the 5 smallest elements. By comprehend-

ing the pandas API, Dias is able to recognize that the second

version is equivalent to, and faster than, the first.

@{expr: called_on}
.sort_values()
.head(n=@{Constant(int): first_n}) ↦→

@{called_on}.nsmallest(n=@{first_n})

(a) LHS ↦→ RHS

type(@{called_on}) == pandas.DataFrame

(b) Preconditions

Figure 7: A rewrite rule example. If we match the LHS in

the source code, we can replace it with the RHS only if the

preconditions hold (at runtime).

checking the form of whole functions. Further, certain checks con-

cerning a statement can only be performed after all the code up to

that statement has been executed. For these reasons, the rewriter

should be a rewriter, an executor, and a dynamic checker.

Tight Latency Budget. EDA notebooks are created incremen-

tally, where the user is in a continuous write-execute-inspect loop.

Thus, we cannot optimize the notebook offline because we do not

have the code. This demands that the system operate at runtime,
which enforces a tight latency budget. Ideally, rewrites should be

applied within interactive speeds (i.e., under 300ms).

In the subsequent sections, we describe how we designed the pat-

tern matcher (Section 4.1) and the rewriter (Section 4.2) to overcome

these challenges. First, we introduce the structure of the rewrite

rules briefly in Section 3.1.

3.1 Pandas Rewrite Rules

The abstract form of the rewrite rules Dias supports can be mod-

eled as transforming a Left Hand Side (LHS) set of statements to

Right Hand Side (RHS) set of statements subject to certain precondi-

tions on the LHS. We introduce some notation to show the structure

of our parameterized rewrite rules. The parameterized portions of

the rewrite rules are general and can match multiple valid code

segments subject to certain conditions (e.g. types). For example

consider the original code in Figure 6(a) rewritten to Figure 6(b)

using the rewrite rule shown in Figure 7. A @{...} entry denotes a

parameterized part of the rule. These parts can be matched to mul-

tiple valid options by Dias. Inside the curly brackets, we describe

Dias: Dynamic Rewriting of Pandas Code

LHS RHS Preconditions

@{Name: df}[[@{Constant(str): a}, @{Constant(str): b}]]=
 @{expr: ser}.str.split(
 @{Constant(str): sep},
 expand=@{Constant(bool): expand})

a, b = [], []
for it in @{ser}.tolist():
 spl = it.split(@{sep})
 a.append(spl[0])
 y = spl[1] if len(spl) > 1 \
 else None
 b.append(y)
@{df}[@{a}] = pandas.Series(a, @{ser}.index)
@{df}[@{b}] = pandas.Series(b, @{ser}.index)

𝔖: @{expand} == True
𝔑: type(@{ser}) == pandas.Series

@{expr: ser}.apply(
 lambda @{Name: par1}:
 @{Constant(str): needle}
 in @{Name: par2})

res = @{ser}.tolist()
res = [(@{needle} in s) for s in res]
pandas.Series(res, @{ser}.index)

𝔖: @{par1} == @{par2}
𝔑: type(@{ser}) == pandas.Series

pd.Series(
 @{expr: e1}.tolist() +
 @{expr: e2}.tolist())

pd.concat([@{e1}, @{e2}],
 ignore_index=True)

𝔑: pd == pandas
𝔑: type(@{e1}) == pandas.Series
𝔑: type(@{e2}) == pandas.Series

Table 1: Examples of Rewrite Rules. If any of the LHS’s is matched, it can be replaced with the corresponding RHS, provided

that the preconditions hold. The symbol𝔖 denotes syntactic preconditions while ℜ denotes runtime ones.

these valid options using a derivation rule of the Python grammar

[2]. For example, @{expr} denotes that any expression can appear

in its place. For Constants, we optionally specify the type of the

constant inside parentheses.
1
So, @{Constant(int)} denotes that

any integer constant can appear in its place. We need to refer to

the parts of the LHS that are parameterized in the preconditions

and the RHS. So, we bind these parts to names. For example, the

code string df.sort_values().head() matches the LHS of Fig-

ure 7 and called_on is bound to df. Everything that is not in @{}
should appear as is. With these in mind, we can read the LHS of Fig-

ure 7 as matching any Python expression on which sort_values()
is applied, followed by head() with any constant integer as the

argument of the formal parameter n.
There are two kinds of preconditions, syntactic and runtime ones.

Syntactic preconditions describe conditions related to the matched

text. Usually, they require that two matched entries of the LHS are

syntactically equal. The runtime preconditions describe conditions

which have to hold at runtime for the original (LHS) and the rewrit-
ten code (RHS) to be semantically equivalent and they are expressed

in Python syntax and semantics. For example, in Figure 7, the result

of the called_on expression that was matched in the LHS should

be a pandas.DataFrame. The runtime preconditions implicitly im-

pose an order of evaluation. In this example, called_on must be

evaluated first, then the preconditions are checked on the resulting

object, and then this object is used in place of called_on in the

RHS. Note that unconditionally evaluating called_on is correct

even if the conditions do not hold because it would be evaluated

anyway in the original.

Table 1 shows three more rewrite rules we use in Dias. The

first two correspond to the examples in Figure 4 and Figure 3,

respectively. Rules can have both runtime and syntactic conditions.

For example, in the second rule, we have the syntactic precondition

@{par1} == @{par2} requires that the two names be equal. To

1
We can determine the type of constants from the AST [3].

Listing 1 A Sketch of Dias’ Pattern Matcher

1: function LambdaSubstrSearch(stmt)

2: // Return True if stmt is a ast.Lambda
3: // that performs substring search.
4: end function

5: function PatternMatch(stmt)

6: for all node in stmt do

7: if node is ast.Call then

8: if node.func.attr = "apply" then

9: arg0← node.func.args[0]

10: if LambdaSubstrSearch(arg0) then

11: return SubstringSearchApply

12: end if

13: if isinstance(arg0, ast.Name) then

14: if node.func.args[1] is axis=1 then

15: return ApplyAxis1

16: end if

17: end if

18: end if

19: end if

20: end for

21: return None

22: end function

differentiate between the two kinds of preconditions, we prefix the

syntactic preconditions with𝔖 and the runtime ones with ℜ.

4 DIAS REWRITE SYSTEM

Dias consists of two main parts: a syntactic pattern matcher and a

rewriter that rewrites the code matched against patterns. We now

describe how the two parts were designed in detail.

Stefanos Baziotis, Daniel Kang, and Charith Mendis

4.1 Dias Pattern Matcher

The pattern matcher is responsible for matching a sequence of

statements with the LHS part of any rewrite rule. This is reminiscent

of regular expressions, but the language we match is not regular. So,

instead, we parse the code as a Python abstract syntax tree (AST)

[2] and do pattern matching at the AST level.

Tominimizematching overhead, we designed the patternmatcher

to factor patterns based on their commonalities. The common parts

are matched first before hierarchically matching more specific com-

ponents of a rule. This eliminates repeatedly matching components

that are common to multiple rules.

Consider the pattern-matching code that matches two patterns:

the third pattern of Table 1 and the one that enables the rewrite

of Figure 2. The LHS of the former is shown in the table. The LHS

of the latter is @{expr: e}.apply(@{Name: fun}, axis=1) (see
Section 4.2). Notice that these LHS’s share parts; they both require

a function call, that is an attribute of some expression and the name

of the function is apply. We want to check the common parts of the

pattern at a single place to exploit commonalities across patterns.

Listing 1 shows a sketch of the pattern-matching code that matches

these two patterns. It recursively loops through all the AST nodes

of type stmt and checks for the two patterns by first checking for

an attribute function called apply and then matching against either

one of the patterns specifically.

Lastly, the pattern matcher needs to be able to match patterns

that span multiple statements. Having a function that matches

single-statement patterns (like the one in Listing 1), there is an-

other function that matches multiple statements. The latter function

operates on a higher level, viewing multi-statement patterns as sets

of smaller ones. So, for a 2-statement pattern, if it matches the first

part, it will then checks the next statement for the second part.

4.2 Dias Rewriter

When a piece of code is successfully matched with a rewrite rule’s

LHS, if there are no preconditions, the rewriter can emit the RHS

code in place of the LHS and execute it. This is simple and it is

done with a series of AST transformations. However, checking

preconditions is challenging because the rewriter must check them

at points, during the execution, when it is correct to do so.

To check the preconditions, the rewriter needs to derive facts

about the execution of the Python program (e.g., the type of an

object at a particular point). Ideally, we would derive such facts

from static program analysis. However, since Python is dynamically

typed, we cannot statically determine how a Python program will

behave when executed. Further, Python does not have a complete

description of its formal semantics (e.g., [18] is not complete). Thus,

even advanced program analyses over Python are limited [16].

The natural alternative is to derive these facts dynamically dur-

ing execution. In particular, we are interested in knowing the type

of Python objects. Python programs can introspect their own ob-

jects and so the simplest way to perform a check is to include the

code that performs the check as part of the rewritten code. This is

conceptually simple and it fits simple checks (like the type-related

ones). This is what we do in Figure 5. There, we insert code that

checks the preconditions. We also insert the RHS and the program

will branch to it if the preconditions are satisfied. Otherwise, we

branch to the original code. However, notice that this style of a

check requires that we know the (concrete version of the) RHS a

priori. This is not the case for all rewrite rules.

Sliced Execution. Let us consider a more demanding rule; that

of Figure 2. For this rewrite to be correct, the function passed to

apply() must have a certain form. Then, a rewrite rule for this

rewrite could have an LHS that matches a function definition with

that form, followed by a call (on an expr) to apply()with the name

of the defined function as the first argument. Such a rule would

have a subtle benefit. Observe that when we perform this rewrite,

we rewrite the function passed to apply(), which means we need

to know the code of the function at the time of rewriting. Because

the function body is matched as part of the LHS, we do know it.

However, this rule is weak. More specifically, the function defi-

nition may not appear in the same cell or even notebook (it might

be part of an external library). One way to strengthen the rule is

to relax the LHS onto just @{expr: df}.apply(@{Name: fun},
axis=1) (so, the function definition is not part of the LHS and the

first argument can be any Name) and add the condition that the

function should follow a certain form to the runtime conditions.
2

The rewriter now needs to insert the code that checks the form of

the function as part of the rewritten code, similar to checking the

type of an object.

But what is the RHS that we emit? Remember that to create the

rewritten version we need the code of the function. Thus, we end

up having to also emit the code that does the rewriting as part

of the rewritten code! On confronting this situation, we searched

for an alternative solution as that one would result in huge code

duplication and unintelligible generated code
3
.

This gave rise to sliced execution. In this mode, we execute

the code up to, but not including, the call to apply. Then, stop and

inspect the code of the passed function and check the preconditions.

Upon passing, we rewrite the code on the fly, and then we execute it.

Essentially, we have two forms of rewrite rules: The regular and the

deferred ones. For regular rewrite rules, all the checks can happen

either statically or they are simple enough that we bake them in

the rewritten code. On the other hand, for the deferred ones, we

need to have executed all the code up to some statement involved

in the rule to perform the necessary dynamic checks and rewriting.

For this reason, we may need to do many rounds of check-rewrite-

execute, which effectively means that we split the cell into slices.

We signify this flow with the back-edge in Figure 5.

5 IMPLEMENTATION

5.1 IPython Integration

Dias is built on top of IPython [52], which is an enhanced Python

interpreter. This implies that a current limitation of our implementa-

tion is that does not work with standard Python. In practice, this is

not a problem because the dominant platform for the notebooks we

target is the IPython notebook (usually accessed through Jupyter

[38]), which requires IPython.

2
A function is an object in Python, that we can inspect and recover its source code. So,

checking this condition at runtime is possible.

3
Note, however, that this solution is possible.

Dias: Dynamic Rewriting of Pandas Code

An IPython notebook consists of a collection of code snippets

called cells. Each cell can be executed individually, which is com-

monly done in interactive EDA workloads. The core feature of

IPython that allows Dias to operate transparently is the magic

function [47]. Dias leverages magic functions to invoke its rewriter

upon cell execution. Unfortunately, the user needs to add a small

annotation on top of every cell such that Dias is invoked on every

execution. We hope to remove this in a future version.

An important detail is that Dias runs on the same IPython in-

stance as the notebook, having access to the same namespace as

the underlying cells. This is necessary for sliced execution, because

Dias needs to inspect the names, types, objects, etc. of the program.

Upon running a cell, Dias gets a single argument, which is the

cell code as a string, which it first parses as an AST. For that, we use

the Python ast library [2], which parses Python code. This implies

a limitation because cells can contain invalid Python syntax (but

valid for IPython, e.g., other magic functions), which this library

will not handle. This did not cause serious problems in practice

but we hope to fix in the future. After the code is parsed as an

AST, we just match patterns on it using the pattern matcher, and

rewrite/execute it using the rewriter.

5.2 Crossing Library Boundaries

It might seem that we could achieve the same optimizations simply

bymodifying the pandas library. For example, consider the problem

we described in Section 4.2, where we have to use complex logic to

get the code of the function passed to apply. If instead of operating
as an external tool, we modified the internals of apply, much of

this complexity would vanish. Specifically, apply gets the function

to be called as its first parameter. So, Dias could check the code

when apply is called, possibly rewrite it and call it, all that without

changing the interface.

The reason we implemented Dias as an external tool is it needs

to view all the user code (and not just the calls to the library) to

perform rewrites that cross the library boundaries (e.g., Figure 3).

Currently, we only explore the direction of going from pandas
to Python, which leads to surprising, multiple-fold speedups. The

inverse i.e., going from Python to pandas, still leads to speedups,
and it is something we hope to explore in the future using rewriting.

6 EVALUATION

6.1 Experimental Setup

All the experiments, except if mentioned otherwise, were performed

on a system with a 12-core AMD Ryzen 5900X, 32GB of main

memory, Samsung 980 PRO NVMe SSD and Ubuntu 22.04.1 LTS.

Benchmark. Our goal was to evaluate Dias on real workloads

and so we picked notebooks from Kaggle. We chose Kaggle as it is a

popular repository for data science workloads and it also contains

both the data and notebooks used. The overarching hypothesis that

we want to validate is that a rewrite system like Dias can offer

substantial speedups on real-world notebooks, through rewriting,

with minimal slowdowns, minimal memory consumption and disk

usage, and without changing the API.

In this work, we focus on ad-hoc EDA, pandas-heavy workloads.
In order to find such notebooks, we chose notebooks randomly

from Kaggle subject to the following conditions:

• At least 50% of static function calls are pandas calls

• Using datasets of size approximately 2GB or less

We chose the first criterion because we focus on EDA notebooks.

In particular, many of the notebooks we excluded focused on ma-

chine learning and plotting, which are out of scope for this work. In

the notebooks we picked, we disabled such code for our evaluation.

Our second criterion was to filter out notebooks that were al-

ready hand-optimized. These notebooks typically operated on large

datasets. Optimization is necessary in this setting as Kaggle has

resource constraints (both computational and memory). However,

hand-optimization requires significant effort. Dias is an automatic

and transparent system and we want to evaluate its effectiveness

without users having to expend that effort.

For the datasets that were significantly lower than 2GB, we

replicated them so that they reach at least several hundred MBs

(otherwise our measurements would be dominated by noise). Also,

we modified any notebook that used a sample/subset of the dataset

to instead operate on the full dataset.

We sampled 20 notebooks satisfying our criteria. There are

rewrite opportunities in 10 of these 20 notebooks, which we coded

in Dias. We focus on these 10 notebooks in our evaluation. We

further executed Dias on the remainder of the notebooks where no

patterns werematched to study Dias’ overhead.We describe further

experiments that include all 20 notebooks in an extended version of

this manuscript [6]. We compare Dias with pandas (version 1.5.1)

and modin [40] (version 0.17.0).

6.2 End-to-End vs Pandas

We first investigated whether Dias can accelerate cells and note-

books compared to standard pandas. To do so, we ran each sampled

notebook with and without Dias. We ran 10 trials each and mea-

sured execution time at the cell level. Our primary metric was the

speedup of cells and notebooks with Dias compared to standard

pandas. We report the geometric mean of the speedups.

Per-Notebook Speedups. We showper-notebook relative speedups

in Figure 9. As shown, Dias can provide substantial speedups at
the notebook level of up to 3.6×. Overall, Dias provides significant
speedups in half of the notebooks (five) and moderate speedups

in one other notebook. We emphasize that these notebooks were

selected randomly from Kaggle, showing the applicability of Dias.

Furthermore, Dias does not significantly slow down any note-

book, with a maximum slowdown of 3%. Dias rewrites cells in these

notebooks but it does not achieve speedups.

Per-Cell Speedups. We show per-cell speedups in Figure 8. For

clarity, we excluded cells that run for fewer than 50ms in the original

version and excluded all speedups and slowdowns when run with

Dias within 10% of the original cell runtime.

As shown, Dias can achieve per-cell speedups of up to 57×. The
cell with the highest speedup is matched by the pattern shown

in Figure 2. The second largest speedup is due to the "Vectorized

Conditionals" pattern discussed in Section 6.5. The majority of cells

we consider are improved by Dias. The maximum slowdown in

Stefanos Baziotis, Daniel Kang, and Charith Mendis

Cells0.2
0.5
1.0
2.0
5.0

10.0
20.0
50.0

Re
la

tiv
e

Sp
ee

du
p

Figure 8: Cell-level relative speedups (excluding cells that originally ran for less than 50ms and also all the cells that got a

speedup or slowdown within the 10% range). Again, Dias provides significant speedups by up to 57×. There are also slowdowns,

which are not substantial (see Figure 10).

an
im

al-
cr

os
sin

g
m

ov
ie-

re
co

m
m

fe
ed

b-
ed

a-
hf

-si
ft

ne
tfl

ix-
da

ta
-v

iz
en

v-
ai-

st
ar

tu
ps

-e
da

ka
gg

le-
su

rv
ey

-2
02

2
co

ur
se

-p
re

di
ct

ion
ad

id
as

-re
ta

il-
ed

a
st

ud
en

t-p
er

f
sa

les
-p

re
d-

xg
bo

os
t

Notebooks

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Re
la

tiv
e

Sp
ee

du
p

Figure 9: Relative speedups on whole notebooks. Dias speeds

up notebooks by up to 3.6× while not slowing down any

notebook by more than 3%.

an individual cell is 28%. In general, the cells that have the high-

est slowdown are fast cells, i.e., those already within interactive

latencies, both before and after rewriting.

Overhead of Dias. We further investigated the cause of slow-

downs. We first measured the overhead of deploying Dias (on all

20 notebooks). We find that Dias never has an overhead of more

than 23 ms with a geometric mean overhead of 0.99ms.

However, in addition to the overhead from deploying Dias, Dias

may also cause downstream effects. We find that in some cases,

cells that are not modified by Dias can experience degradations

in performance. The highest magnitude of those appear only in

notebooks where Dias rewrites cells. Because of this, and because

some of these slowdowns are much larger than any overhead that

Dias can cause, we hypothesize that rewriting is not the cause

of the slowdown. Rather, it seems that the rewritten version of a

cell, while faster than the original version of this same cell, causes

a slowdown in another cell of the same notebook. Nonetheless,

Cells
0.6

0.7

0.8

0.9

1.0

Re
la

tiv
e

Sp
ee

du
p

185ms

12ms 17ms 20ms 207ms 14ms
11ms 98ms

Figure 10: The subset of cells from Figure 8 that got slowed

down. Above the bars, we show the absolute slowdown. The

slowdowns are within interactive latencies (i.e., less than

300ms), with the maximum overhead of Dias being 23ms.

these slowdowns are not substantial. In Figure 10 we show only

the cells from Figure 8 that get slowdowns along with the absolute

slowdown. That figure shows that even when the relative slowdown

is large, the absolute slowdown is below interactive latency times

(i.e., below 300ms).

6.3 Comparison with Modin

We compare Dias with modin [40] (using Ray as the underlying

engine which is the default). We chose modin because it enjoys wide
adoption and is supposed to be a drop-in replacement for pandas.

We focus on deploying modin on a single server as this is the

setting we focus on in this work. Unfortunately, we find that de-

ploying modin in this setting is difficult for two reasons: excess

memory utilization and lack of support for the full pandas API.

For the notebooks we consider, modin consumes substantially

more memory resources than standard pandas. Even when using a

powerful AWS server, the AWS c5.24xlarge with 96 vCPUs and

192 GB of RAM, modin was unable to execute five of the ten note-

books we consider. As a result, we modify the default modin settings
to execute on 4 to 12 cores depending on the notebook and we also

had to reduce the dataset replication on 3 of the 10 notebooks. With

these modifications, we are able to run the notebooks with modin,
using our original setup.

We further find that modin does not support 100% of the pandas
API. As a result, we could not run two of the ten notebooks. We

changed the impeding snippets to ones that are functionally close.

Given our new setup, we compared modin, Dias, and vanilla pandas.

Dias: Dynamic Rewriting of Pandas Code

fe
ed

b-
ed

a-
hf

-si
ft

ka
gg

le-
su

rv
ey

-2
02

2

sa
les

-p
re

d-
xg

bo
os

t

en
v-

ai-
st

ar
tu

ps
-e

da

an
im

al-
cr

os
sin

g

co
ur

se
-p

re
di

ct
ion

ad
id

as
-re

ta
il-

ed
a

ne
tfl

ix-
da

ta
-v

iz

st
ud

en
t-p

er
f

m
ov

ie-
re

co
m

m

Notebooks

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5

Re
la

tiv
e

Sp
ee

du
p Dias

Modin-4
Modin-8
Modin-12

Figure 11: Comparing Dias with modin [40]. Dias is faster for 9 out of 10 notebooks (Up to 26.4× faster with 4.1× geometric

mean). modin is, in many cases significantly, slower than the original for these 9 notebooks. For the one notebook where Dias is

slower, it is no more slower than 3% compared to the original.

40

90

fe
ed

b-
ed

a-
hf

-si
ft

ka
gg

le-
su

rv
ey

-2
02

2
en

v-
ai-

st
ar

tu
ps

-e
da

an
im

al-
cr

os
sin

g

co
ur

se
-p

re
di

ct
ion

ad
id

as
-re

ta
il-

ed
a

st
ud

en
t-p

er
f

m
ov

ie-
re

co
m

m

Notebooks

0

5

10

20

M
em

or
y+

Di
sk

 U
sa

ge
 (G

B)

Pandas
Modin-4
Dias

Figure 12: RAM and disk usage comparison in modin, Dias
and pandas. Dias and pandas do not use the disk and they use

almost the same amount of RAM in all cases. modin uses the

RAM and disk aggressively, surpassing the 80GB threshold

for a notebook where pandas/Dias use less than 5GB.

As shown in Figure 11
4
, modin slows down 9 of the 10 total

notebooks we consider compared to vanilla pandas. It speeds up
one notebook which is dominated by a call to apply(), which
modin is able to parallelize. As witnessed in this notebook, one

advantage of modin is that it can scale with the availability of more

hardware resources in cases where it can parallelize. Dias does not

enjoy such scaling benefits. However, we find that modin cannot
parallelize the majority of the notebooks we consider diminishing

any scaling benefits. Overall, Dias is up to 26.4× faster than modin
(4.1× geometric mean) for whole notebooks.

4
Dias’ results in Figure 11 look slightly different from those in Figure 9, even though

the same notebooks are used. This is because of the changes we had to perform on

some of the notebooks (i.e., less replication and API changes) to run them with modin.

We further show that modin uses memory resources (RAM and

disk) aggressively, with results in Figure 12
5
. When deploying

modin exclusively across multiple servers, it is generally acceptable

to use all the available hardware resources. However, many of the

users of ad-hoc EDA workloads have limited hardware resources,

further highlighting the deployment issues with modin. Note that
Dias, (like pandas), makes no use of the disk.

6.4 Comparing Various Dataframe Libraries

To further understand how modin and other dataframe libraries

perform on ad-hoc EDA workloads, we perform a series of targeted

experiments using common patterns we have found in such work-

loads. In addition to studying modin, we also study three other

common dataframe libraries: dask [34] (version 2022.12.1), Koalas

[39] (version 0.32.0), and PolaRS [15] (version 0.7). dask is another

widely adopted parallel dataframe library with a slightly different

API from that of pandas. Koalas implements the pandas API over
PySpark [12]. PolaRS [15] is a pandas replacement (using Rust

under the hood), which, however, has a different API.

We use a c5.24xlarge AWS instance with 96 vCPUs and 192

GiB of RAM. We use 12 vCPUs for modin, dask, Koalas and PolaRS.
The dataset used is the NYC Yellow Taxi Dataset 2015 - January

[48] (except for one case mentioned below) with a size of around

1.8GB. We picked this dataset because (a) it is large (the subset we

use is the largest we could run the experiments with, using the

libraries mentioned, on this machine) and these libraries specialize

in large datasets and (b) it has been used in previous work [40] and

in multiple notebooks throughout the Internet [21].

Column-Wise Operations. A common pattern in pandas is

to perform column-wise operations. In fact, this pattern does not

involve interoperability with other libraries or complex Python

5
The only way we found to measure modin’s memory consumption somewhat reliably

was using ray memory, which however was still unreliable and very slow to query.

We could not obtain memory measurements for 2 notebooks.

Stefanos Baziotis, Daniel Kang, and Charith Mendis

df['pickup_longitude'] + df['pickup_latitude']

(a) Add Two Series Element-Wise

df['pickup_longitude'].std()

(b) Compute the Standard Deviation of a Series

Figure 13: Common column operations, which are fast in

pandas. But modin, dask and Koalas are tens to hundreds of

times slower.

np.sum(df['pickup_longitude'])

(a) Sum Column using numpy

col_a = 'pickup_longitude'
col_b = 'pickup_latitude'
np.where(

pandas_df[col_a] < pandas_df[col_b],
10, 20)

(b) Vectorized Conditional Assignment using numpy

Figure 14: Interacting with numpy. Users expect the interac-
tion to be fast because pandas uses numpy as a building block.

Yet, modin, dask and Koalas are tens to hundreds of times

slower.

code. Because this pattern is common, pandas uses vectorized im-

plementations. This means that not only does it process elements in

bulk but also does it so completely in native code, thereby avoiding

Python’s overheads. We show two examples in Figure 13.

In the first example, we add two pandas columns element-wise.

modin, dask, Koalas and PolaRS are 55.1×, 136.8×, 9.4× and 7.6×
slower than pandas, respectively. In the second example, we per-

form a standard reduction over a column: computing its standard

deviation. modin, dask and Koalas are 2.6×, 4.6× and 31.2× slower

than pandas, respectively. Therefore, even for simple and ubiqui-

tous operations within the pandas space, pandas replacements can

incur significant slowdowns. Interestingly, PolaRS is 1.1× faster for

this example.

Interaction with NumPy. Another standard operation we find

common is to interoperate numpy and dataframe libraries. We hy-

pothesize that this is a common operation because numpy is a core

primitive used in pandas: pandas columns are stored as numpy
arrays and many pandas operations use numpy.

We tried two simple operations shown in Figure 14. In Figure 14a

we perform a simple sum over a column. In Figure 14b, we use

np.where() to conditionally assign values to a pandas.Series
(this is a standard way to speed up pandas [8]).

For the first example, modin, dask and PolaRS are 18.3×, 179.8×
and 1.4× slower than pandas, respectively. Koalas was unable to
perform this operation within the memory limits. We instead used

a smaller dataset, Iris [11], a common dataset in the pattern recog-

nition literature. Koalas is 190.4× slower in this case.

fe
ed

b-
ed

a-
hf

-si
ft

ka
gg

le-
su

rv
ey

-2
02

2
sa

les
-p

re
d-

xg
bo

os
t

en
v-

ai-
st

ar
tu

ps
-e

da
an

im
al-

cr
os

sin
g

co
ur

se
-p

re
di

ct
ion

ad
id

as
-re

ta
il-

ed
a

ne
tfl

ix-
da

ta
-v

iz
st

ud
en

t-p
er

f
m

ov
ie-

re
co

m
m

Notebooks

0.90

0.95

1.00

1.05

1.10

1.15

Re
la

tiv
e

Sl
ow

do
wn

Figure 15: Slowdowns on whole notebooks without sliced

execution. Disabling sliced execution leads to slowdowns

and no significant speedups.

For the second example, modin, dask, Koalas and PolaRS are

54.5×, 111.7×, 202× and 3× slower than pandas, respectively.
As we can see, modin, dask and Koalas do not interoperate

well with numpy. Nevertheless, such pandas usage is common. We

have 1 notebook (10%) using np.sum() and another 3 (30%) using

np.where() (one of which makes heavy use of it). PolaRS also

incurs a slowdown, but it is much smaller.

Iterative Access of Individual Elements. The final common

pattern we consider is the iterative access to individual dataframe

elements.We show an example in Figure 1, which we extracted from

a real notebook. modin and Koalas are 1914.5× and 155× slower

than pandas, respectively (note that we were able to run the loop

only for 5 iterations without out-of-memory errors in Koalas, so we

compared with 5 iterations of pandas). PolaRS is 20.8× slower for

15 iterations and 99.7× slower for 100 iterations (it was realistically

impossible to run the other frameworks for 100 iterations).

It was more difficult to run the experiment for dask. In general,

dask.DataFrame is not intended for individual element access. This

loop is not supported as-is by the dask API and we could not find

a reasonable way to translate it. But for completeness, we access a

single individual element in dask and we compare it with doing 15

iterations of the loop above in pandas. dask is 506× slower.

Discussion. As our results show, ad-hoc EDA workloads con-

tain diverse code. Given the limited hardware resources available

in these settings, we see that bulk-parallel dataframe libraries like

modin, dask and Koalas, are not well suited for ad-hoc EDA work-

loads. PolaRS, can give small performance improvements compared

to pandas, and its slowdowns are smaller compared to other li-

braries. However, it can also cause considerable slowdowns (e.g.,

with the iterative element access) and has a significantly different

API. For example, the pandas snippet df[’A’] = 1 is translated to

df = df.with_column(pl.lit(1).alias('A'))

in PolaRS. As a result, it requires learning new syntax.

Dias: Dynamic Rewriting of Pandas Code

def foo(row):
if row['A'] == row['B'] and row['A'] < row['C']:

return 'X'
elif row['A'].startswith('Y'):

return 'Y'
elif row['B'] in ls:

return 'Z'
else:

return 'NA'

df.apply(foo, axis=1)

(a) Original pandas apply(). It processes each row sequentially, using

the interpreter.

conditions = [
(df['A'] == df['B']) & (df['A'] < df['C']),
df['A'].str.startswith('Y'),
df['B'].isin(ls)

]
choices = [
'X', 'Y', 'Z'

]
np.select(conditions, choices, default='NA')

(b) Vectorized execution using numpy.select()

Figure 16: Vectorized apply() with conditions, which can

be hundreds of times faster [8]. However, performing this

rewrite automatically is challenging.

6.5 Understanding Dias’ Performance

To understand the performance gains of Dias, we conduct an ab-

lation where we remove sliced execution and we also discuss two

case studies in detail.

Disabling Sliced Execution. As we explained in Section 4.2,

sliced execution increases the complexity of Dias. To investigate

whether or not sliced execution improves performance, we ablated

sliced execution. Figure 15 shows the relative slowdown compared

to having sliced execution enabled.

As shown, all notebooks except one run faster without sliced ex-

ecution. In fact, our largest cell-level speedup (57×) is lost. Further-
more, although only two patterns that hit require sliced execution,

patterns presented in online tutorials [8] and which require sliced

execution, can give dramatic speedups of up to 380×.

Vectorized Conditionals. We further study two case studies,

starting with vectorized conditionals.

We show an example of rewriting a pandas apply() function

with numpy’s np.select() in Figure 16 [8]. Both versions output a

certain value per row based on some conditions. The second one

gives many-fold speedups, 36× in our evaluation and up to 380× in

other situations [8], mainly due to the use of vectorized execution.

To do this rewrite, Dias checks that the function foo contains
only an if-else chain and the conditions are such that we can

arr = df['C'].values
n = len(arr)
res = np.empty(n, dtype=arr.dtype)
for i in range(n):

spl = arr[i].split(',', maxsplit=1)
res[i] = spl

df_temp = pd.DataFrame(res, columns=['a', 'b'])
a = res['a']
b = res['b']

Figure 17: pandas.Series.str.split() Implementation (Sim-

plified)

translate them to equivalent that apply to whole columns (for ex-

ample, we cannot translate if bar() for some random function

bar). Also, the return values should be such that can be converted

to numpy arrays. The constant ’X’ is such a value but if it were

bar(row[’A’]), we would not, in general, be able to translate it.

Verifying these conditions is not the only tricky part; producing

the rewritten version can be challenging too. For example, the

original uses Python’s logical-AND (i.e., and) to compare elements,

but we need to use Python’s bitwise-AND (i.e., &) when translating

to pandas and the parentheses around the two sides are required.

Similarly, a condition like a in ls needs to be translated to a call to
the pandas isin() function. These are subtleties of rewriting that

can be easily missed if we carry it out manually. Besides leading to

bugs, they require extensive knowledge of the pandas API.
As explained in Section 4.2, these checks, and the rewriting,

cannot be performed a priori because the code of foo might not

be available yet at the start of the cell. Thus, the rewriter employs

sliced execution to perform these actions on demand.

Finally, if the user changes foo such that it does not abide to

the above conditions, the rewriter cannot perform the rewrite. At

the same time, however, the original code remains intact. Thus, the

code will never be slower than the original. Moreover, had the user

performed the rewrite by hand, they would have to convert it back

to the apply() version, but this effort disappears with the rewriter.

Translating to Pure Python. We present a case study of a

non-intuitive result: translating an "optimized" pandas call to pure

Python (Figure 4). In general, users expect pandas to be more effi-

cient than pure Python since pandas uses vectorized, native code,
while also avoiding the interpreter, when possible.

However, .str.split() is a string operation and these cannot in
general be vectorized by numpy. So, a call to .str.split() reaches
a standard Python loop to carry out the operation [33].

We would then expect the pandas version to be in par with our

version. We have to look more closely to understand the discrep-

ancy. In Figure 17, we show a simplified version of .str.split()’s
implementation. Specifically, the important thing is that in the loop,

we gather a collection of (2-element) lists in res (res is a numpy
array but it could be any container without much difference in

performance; e.g., it could be a list. The important thing is what it

stores.). Then, we create our two results, our two Series (via cre-
ating a DataFrame, but the particular way of doing it is irrelevant).

Stefanos Baziotis, Daniel Kang, and Charith Mendis

In particular, we split these lists "vertically" and in half so that all

the first elements of the lists create the Series a and all the second

elements create the Series b.
One should contrast this with our rewritten version. There, we

create only two lists (a and b). At every iteration of the loop, we

create one list, the result of split(), append the individual ele-

ments to a and b and then throw it away. Notice that in the pandas
version, the result of split has to be saved. So, while on the surface,
the two loops allocate the same number of lists, in our version, the

same space can be reused for every iteration.

Finally, we convert a and b (both lists of strings) to Series.
Under the hood, a list of strings is a contiguous block of memory in

which every element is a pointer to the string. A Series of strings

is also a contiguous block of memory in which every element is

a pointer to a string. So, the conversion from the one to the other

is cheap. However, in the pandas version, the elements are stored

together in lists "horizontally", but we want to store them together

"vertically" (if we imagine a matrix where every row is a list coming

from split). This halving and regrouping is expensive.

In this example, the rewriter enables us to optimize a library

without changing the library. As we have explained earlier, the

rewriter can cross library boundaries and thus it can optimize across

Python, pandas and numpy, without the need to provide custom

versions of these libraries.

7 RELATEDWORK

Parallel and Distributed Dataframe Libraries. Most previ-

ous work on optimizing dataframe libraries falls under the use of

parallel and distributed execution. Our technique is orthogonal

to these techniques. First, to the best of our knowledge, no other

system has used rewriting at the interface boundary of Python and

pandas. Systems like modin [40], dask [34], Koalas [39], PolaRS

[15], Ponder [4], PolyFrame [45] and Magpie [24] are all essentially

custom versions of pandas (some are full rewrites, while others

implement the pandasAPI over some underlying system). They use

many different techniques, like the use of parallel execution using

anything from Rust threads to engines like Ray [36] and Spark [55],

partition schemes, query optimization and the use of the hard disk.

But none uses rewriting as we do, and all of these techniques are

performed within the library. This is the main conceptual difference,

but there are also other practical drawbacks as we outlined in the

previous sections, mainly arising from the fact that these systems

do not focus on single-machine, ad-hoc, diverse use cases.

Optimizing Dataframe Libraries for Interactive Settings. A
slightly different and interesting line of work focuses on optimiz-

ing dataframe queries for interactive workloads [27, 54]. Some of

their optimizations include displaying partial results (e.g., applying

head() on an expression), reordering operations and performing

computation during think-time, i.e., when the user is inspecting

results. We also recognize the importance of interactive workloads,

which include the EDA, single-machine, ad-hoc workloads we focus

on in this paper, but we are taking a different path in optimizing

them. We use rewriting at the interface boundary, which is funda-

mentally different from the techniques used in this previous work.

Rewrite systems in compilers. Program rewriting is prevalent

in compilers. Production-level compilers use peephole optimizers

to perform local rewrites. LLVM [25] uses InstCombine [29] and

VectorCombine [30] to perform IR rewrites on scalars and vec-

tors respectively. Further, there have been many works such as

Alive [31], Alive2 [32], Souper [44] that try to prove or automat-

ically find such rewrites inside traditional compilers. TASO [23]

and PET [51] have looked into how rewrites can be used to op-

timize tensor computations in tensor compilers. Domain specific

languages such as Halide [41] include extensive rewrite engines to

perform optimizations [37]. Even complicated optimization passes

such as dataflow optimizations [28] and vectorization [9] can be

expressed as a series of rewrites. In fact, the compiler infrastructure

MLIR [26] is rooted on the premise of rewriting to express complex

IR transformations. Dias takes inspiration from these systems that

mainly perform static program rewrites and performs rewrites for

pandas implemented in the dynamically-typed Python language.

Dynamic Optimization. There has been a large body of work

that optimizes programs at runtime. Just-in-time (JIT) compilation

is one common technique applied to interpreted languages like

Javascript (TraceMonkey [17], V8 [14]) and non-native languages

like Java (HotSpot [19]). Recently, Python also started to enjoy

significant speedups from optimization at runtime, with the release

of the specializing adaptive interpreter [22]. All these methods

differ in one key aspect from our method: they optimize the host

language, focusing on low-level optimizations (on each language’s

bytecode) and not the host-library combination. On the other hand,

our technique can perform higher-level (i.e., library-level), andmore

impactful improvements because it understands the semantics of

both the host language and the library.

8 CONCLUSION

In this paper, we identified program rewriting as a lightweight

technique for optimizing ad-hoc, single-machine EDA workloads.

Performing rewrites is valid only under conditions, which need to

be checked at runtime, a setting that imposes strict latency bound-

aries. We implemented Dias, a system which rewrites pandas code

automatically and transparently, while simultaneously addressing

the requirements and constraints of condition-checking. Dias ap-

plies rewrite rules automatically, and it verifies whether applying a

rule is correct by either injecting checks in the code or by slicing

the execution and performing checks in between.

We experimentally showed that Dias was able to achieve signif-

icant speedups (up to 57× for individual cells and 3.5× for whole
notebooks), both compared to pandas and modin, in real-world, ran-
domly sampled notebooks. At the same time, Dias incurs minimal

runtime and memory overheads, while making no use of the disk,

whether Dias succeeds to optimize code or not. Last but not least,

this paper showed a new direction for optimization, that of crossing

library boundaries, the key aspect of which is to employ techniques

that understand both the library and the client code.

Dias: Dynamic Rewriting of Pandas Code

ACKNOWLEDGMENTS

We would like to thank Marc Canby and Stratos Vamvourellis for

inisghtful comments and suggestions. This work was supported

by the AWS Cloud Credit for Research and the Open Philanthropy

project.

REFERENCES

[1] AIEducation. 2022. What course are you going to take? https://www.kaggle.com/

code/aieducation/what-course-are-you-going-to-take/. Accessed: 2022-12-09.

[2] Python ast module. 2022. https://docs.python.org/3/library/ast.html. Accessed:

2022-12-09.

[3] Python ast module: Constant. 2022. https://docs.python.org/3/library/ast.html#

ast.Constant. Accessed: 2022-12-09.

[4] Ponder | Pandas at Scale. 2022. https://ponder.io/. Accessed: 2022-12-09.

[5] Rounak Banik. 2017. Movie Recommender Systems. https://www.kaggle.com/

code/rounakbanik/movie-recommender-systems. Accessed: 2022-12-09.

[6] Stefanos Baziotis, Daniel Kang, and Charith Mendis. 2022. Dias: Dynamic Rewrit-

ing of Pandas Code (Extended Version). https://baziotis.cs.illinois.edu/papers/

dias.pdf. Accessed: 2022-12-09.

[7] Erik Bruin. 2022. NLP on Student Writing: EDA. https://www.kaggle.com/code/

erikbruin/nlp-on-student-writing-eda. Accessed: 2022-12-09.

[8] Nathan Cheever. 2019. 1000x faster data manipulation: vectorizing with Pandas

and Numpy. https://www.youtube.com/watch?v=nxWginnBklU. Accessed:

2022-12-09.

[9] Yishen Chen, Charith Mendis, Michael Carbin, and Saman Amarasinghe. 2021.

VeGen: A Vectorizer Generator for SIMD and Beyond. In Proceedings of the
26th ACM International Conference on Architectural Support for Programming
Languages and Operating Systems (Virtual, USA) (ASPLOS ’21). Association for

Computing Machinery, New York, NY, USA, 902–914. https://doi.org/10.1145/

3445814.3446692

[10] Atanu Dan. 2020. Pandas DataFrame: Performance Optimization. https://medium.

com/@atanudan/pandas-dataframe-performance-optimization-8b87db24c2c4.

[11] Iris Dataset. 1936. https://archive.ics.uci.edu/ml/datasets/Iris. Accessed: 2022-12-

09.

[12] PySpark Documentation. 2022. https://spark.apache.org/docs/latest/api/python/.

Accessed: 2022-12-09.

[13] Pandas Documentation. 2023. Enhancing performance. https://pandas.pydata.

org/docs/user_guide/enhancingperf.html.

[14] Javascript V8 Engine. 2022. https://v8.dev/. Accessed: 2022-12-09.

[15] PolaRS: Lightning fast DataFrame library for Rust and Python. 2022. https:

//www.pola.rs/. Accessed: 2022-12-09.

[16] Aymeric Fromherz, Abdelraouf Ouadjaout, and Antoine Miné. 2018. Static

Value Analysis of Python Programs by Abstract Interpretation. In NASA Formal
Methods, Aaron Dutle, César Muñoz, and Anthony Narkawicz (Eds.). Springer

International Publishing, Cham, 185–202.

[17] Andreas Gal, Brendan Eich, Mike Shaver, David Anderson, David Mandelin,

Mohammad R. Haghighat, Blake Kaplan, Graydon Hoare, Boris Zbarsky, Jason

Orendorff, Jesse Ruderman, Edwin W. Smith, Rick Reitmaier, Michael Bebenita,

Mason Chang, and Michael Franz. 2009. Trace-Based Just-in-Time Type Spe-

cialization for Dynamic Languages. In Proceedings of the 30th ACM SIGPLAN
Conference on Programming Language Design and Implementation (Dublin, Ire-

land) (PLDI ’09). Association for Computing Machinery, New York, NY, USA,

465–478. https://doi.org/10.1145/1542476.1542528

[18] Dwight Guth. 2013. A formal semantics of Python 3.3. (2013).

[19] Christian Häubl and Hanspeter Mössenböck. 2011. Trace-Based Compilation

for the Java HotSpot Virtual Machine. In Proceedings of the 9th International
Conference on Principles and Practice of Programming in Java (Kongens Lyngby,
Denmark) (PPPJ ’11). Association for Computing Machinery, New York, NY, USA,

129–138. https://doi.org/10.1145/2093157.2093176

[20] Sofia Heisler. 2017. No More Sad Pandas Optimizing Pandas Code for Speed and

Efficiency, PyCon 2017. https://www.youtube.com/watch?v=HN5d490_KKk.

[21] NYC Taxi Dataset Used in Kaggle Competition. 2017. https://www.kaggle.com/

c/nyc-taxi-trip-duration. Accessed: 2022-12-09.

[22] Python Specializing Adaptive Interpreter. 2021. https://peps.python.org/pep-

0659/. Accessed: 2022-12-09.

[23] Zhihao Jia, Oded Padon, James Thomas, Todd Warszawski, Matei Zaharia, and

Alex Aiken. 2019. TASO: Optimizing Deep Learning Computation with Au-

tomatic Generation of Graph Substitutions. In Proceedings of the 27th ACM
Symposium on Operating Systems Principles (Huntsville, Ontario, Canada) (SOSP
’19). Association for Computing Machinery, New York, NY, USA, 47–62. https:

//doi.org/10.1145/3341301.3359630

[24] Alekh Jindal, K Venkatesh Emani, Maureen Daum, Olga Poppe, Brandon Haynes,

Anna Pavlenko, Ayushi Gupta, Karthik Ramachandra, Carlo Curino, Andreas

Mueller, et al. 2021. Magpie: Python at Speed and Scale using Cloud Backends..

In CIDR.

[25] C. Lattner and V. Adve. 2004. LLVM: a compilation framework for lifelong pro-

gram analysis & transformation. In International Symposium on Code Generation
and Optimization, 2004. CGO 2004. 75–86. https://doi.org/10.1109/CGO.2004.

1281665

[26] Chris Lattner, Mehdi Amini, Uday Bondhugula, Albert Cohen, Andy Davis,

Jacques Arnaud Pienaar, River Riddle, Tatiana Shpeisman, Nicolas Vasilache, and

Oleksandr Zinenko. 2021. MLIR: Scaling Compiler Infrastructure for Domain

Specific Computation. In CGO 2021.
[27] Doris Jung Lin Lee, Dixin Tang, Kunal Agarwal, Thyne Boonmark, Caitlyn Chen,

Jake Kang, Ujjaini Mukhopadhyay, Jerry Song, Micah Yong, Marti A. Hearst, and

Aditya G. Parameswaran. 2021. Lux: Always-on Visualization Recommendations

for Exploratory Data Science. CoRR abs/2105.00121 (2021). arXiv:2105.00121

https://arxiv.org/abs/2105.00121

[28] John M. Li and Andrew W. Appel. 2021. Deriving Efficient Program Transfor-

mations from Rewrite Rules. Proc. ACM Program. Lang. 5, ICFP, Article 74 (aug
2021), 29 pages. https://doi.org/10.1145/3473579

[29] LLVM. 2022. InstCombine. https://llvm.org/doxygen/InstructionCombining_

8cpp_source.html. Accessed: 2022-12-09.

[30] LLVM. 2022. VectorCombine. https://llvm.org/doxygen/VectorCombine_8cpp_

source.html. Accessed: 2022-12-09.

[31] Nuno Lopes, David Menendez, Santosh Nagarakatte, and John Regehr. 2015.

Provably Correct Peephole Optimizations with Alive. In PLDI’15, Portland, OR,
USA. ACM. https://www.microsoft.com/en-us/research/publication/provably-

correct-peephole-optimizations-alive/

[32] Nuno P. Lopes, Juneyoung Lee, Chung-Kil Hur, Zhengyang Liu, and John Regehr.

2021. Alive2: Bounded Translation Validation for LLVM. In Proceedings of the
42nd ACM SIGPLAN International Conference on Programming Language Design
and Implementation (Virtual, Canada) (PLDI 2021). Association for Computing

Machinery, New York, NY, USA, 65–79. https://doi.org/10.1145/3453483.3454030

[33] Pandas 1.5.1: _map_infer_mask(). 2022. https://github.com/pandas-dev/pandas/

blob/91111fd99898d9dcaa6bf6bedb662db4108da6e6/pandas/_libs/lib.pyx#L2863.

Accessed: 2022-12-09.

[34] Matthew Rocklin. 2015. Dask: Parallel Computation with Blocked algorithms and

Task Scheduling. In Proceedings of the 14th Python in Science Conference, Kathryn
Huff and James Bergstra (Eds.). 126 – 132. https://doi.org/10.25080/Majora-

7b98e3ed-013

[35] Fahad Mehfooz. 2021. ClubHouse EDA. https://www.kaggle.com/code/

fahadmehfoooz/clubhouse-eda. Accessed: 2022-12-09.

[36] Philipp Moritz, Robert Nishihara, Stephanie Wang, Alexey Tumanov, Richard

Liaw, Eric Liang, Melih Elibol, Zongheng Yang, William Paul, Michael I. Jordan,

and Ion Stoica. 2018. Ray: ADistributed Framework for Emerging AI Applications

(OSDI’18). USENIX Association, USA, 561–577.

[37] Julie L. Newcomb, Andrew Adams, Steven Johnson, Rastislav Bodik, and Shoaib

Kamil. 2020. Verifying and Improving Halide’s Term Rewriting System with

Program Synthesis. Proc. ACM Program. Lang. 4, OOPSLA, Article 166 (nov 2020),
28 pages. https://doi.org/10.1145/3428234

[38] Jupyter Notebooks. 2022. https://jupyter-notebook.readthedocs.io/en/latest/

notebook.html. Accessed: 2022-12-09.

[39] Koalas: pandas API on Apache Spark. 2022. https://koalas.readthedocs.io/en/

latest/. Accessed: 2022-12-09.

[40] Devin Petersohn, Dixin Tang, Rehan Durrani, Areg Melik-Adamyan, Joseph E.

Gonzalez, Anthony D. Joseph, and Aditya G. Parameswaran. 2022. Flexible

Rule-Based Decomposition and Metadata Independence in Modin: A Parallel

Dataframe System. Proc. VLDB Endow. 15, 3 (feb 2022), 739–751. https://doi.org/

10.14778/3494124.3494152

[41] Jonathan Ragan-Kelley, Connelly Barnes, Andrew Adams, Sylvain Paris, Frédo

Durand, and Saman Amarasinghe. 2013. Halide: A Language and Compiler

for Optimizing Parallelism, Locality, and Recomputation in Image Processing

Pipelines. In Proceedings of the 34th ACM SIGPLAN Conference on Programming
Language Design and Implementation (Seattle,Washington, USA) (PLDI ’13). ACM,

New York, NY, USA, 519–530. https://doi.org/10.1145/2491956.2462176

[42] Adam Rule, Aurélien Tabard, and James D. Hollan. 2018. Exploration and Ex-

planation in Computational Notebooks. In Proceedings of the 2018 CHI Con-
ference on Human Factors in Computing Systems (Montreal QC, Canada) (CHI
’18). Association for Computing Machinery, New York, NY, USA, 1–12. https:

//doi.org/10.1145/3173574.3173606

[43] Python for Social Scientists San Diego State University, Linguistics/BDA 572.

2022. https://gawron.sdsu.edu/python_for_ss. Accessed: 2022-12-09.

[44] Raimondas Sasnauskas, Yang Chen, Peter Collingbourne, Jeroen Ketema, Gratian

Lup, Jubi Taneja, and John Regehr. 2017. Souper: A Synthesizing Superoptimizer.

https://doi.org/10.48550/ARXIV.1711.04422

[45] Phanwadee Sinthong and Michael J. Carey. 2021. PolyFrame: A Retargetable

Query-Based Approach to Scaling Dataframes. Proc. VLDB Endow. 14, 11 (oct
2021), 2296–2304. https://doi.org/10.14778/3476249.3476281

[46] Sunny Solanki. 2021. How to Speed up Code involving Pandas DataFrame using

Numba? https://coderzcolumn.com/tutorials/python/guide-to-speed-up-code-

involving-pandas-dataframe-using-numba.

https://www.kaggle.com/code/aieducation/what-course-are-you-going-to-take/
https://www.kaggle.com/code/aieducation/what-course-are-you-going-to-take/
https://docs.python.org/3/library/ast.html
https://docs.python.org/3/library/ast.html#ast.Constant
https://docs.python.org/3/library/ast.html#ast.Constant
https://ponder.io/
https://www.kaggle.com/code/rounakbanik/movie-recommender-systems
https://www.kaggle.com/code/rounakbanik/movie-recommender-systems
https://baziotis.cs.illinois.edu/papers/dias.pdf
https://baziotis.cs.illinois.edu/papers/dias.pdf
https://www.kaggle.com/code/erikbruin/nlp-on-student-writing-eda
https://www.kaggle.com/code/erikbruin/nlp-on-student-writing-eda
https://www.youtube.com/watch?v=nxWginnBklU
https://doi.org/10.1145/3445814.3446692
https://doi.org/10.1145/3445814.3446692
https://medium.com/@atanudan/pandas-dataframe-performance-optimization-8b87db24c2c4
https://medium.com/@atanudan/pandas-dataframe-performance-optimization-8b87db24c2c4
https://archive.ics.uci.edu/ml/datasets/Iris
https://spark.apache.org/docs/latest/api/python/
https://pandas.pydata.org/docs/user_guide/enhancingperf.html
https://pandas.pydata.org/docs/user_guide/enhancingperf.html
https://v8.dev/
https://www.pola.rs/
https://www.pola.rs/
https://doi.org/10.1145/1542476.1542528
https://doi.org/10.1145/2093157.2093176
https://www.youtube.com/watch?v=HN5d490_KKk
https://www.kaggle.com/c/nyc-taxi-trip-duration
https://www.kaggle.com/c/nyc-taxi-trip-duration
https://peps.python.org/pep-0659/
https://peps.python.org/pep-0659/
https://doi.org/10.1145/3341301.3359630
https://doi.org/10.1145/3341301.3359630
https://doi.org/10.1109/CGO.2004.1281665
https://doi.org/10.1109/CGO.2004.1281665
https://arxiv.org/abs/2105.00121
https://doi.org/10.1145/3473579
https://llvm.org/doxygen/InstructionCombining_8cpp_source.html
https://llvm.org/doxygen/InstructionCombining_8cpp_source.html
https://llvm.org/doxygen/VectorCombine_8cpp_source.html
https://llvm.org/doxygen/VectorCombine_8cpp_source.html
https://www.microsoft.com/en-us/research/publication/provably-correct-peephole-optimizations-alive/
https://www.microsoft.com/en-us/research/publication/provably-correct-peephole-optimizations-alive/
https://doi.org/10.1145/3453483.3454030
https://github.com/pandas-dev/pandas/blob/91111fd99898d9dcaa6bf6bedb662db4108da6e6/pandas/_libs/lib.pyx#L2863
https://github.com/pandas-dev/pandas/blob/91111fd99898d9dcaa6bf6bedb662db4108da6e6/pandas/_libs/lib.pyx#L2863
https://doi.org/10.25080/Majora-7b98e3ed-013
https://doi.org/10.25080/Majora-7b98e3ed-013
https://www.kaggle.com/code/fahadmehfoooz/clubhouse-eda
https://www.kaggle.com/code/fahadmehfoooz/clubhouse-eda
https://doi.org/10.1145/3428234
https://jupyter-notebook.readthedocs.io/en/latest/notebook.html
https://jupyter-notebook.readthedocs.io/en/latest/notebook.html
https://koalas.readthedocs.io/en/latest/
https://koalas.readthedocs.io/en/latest/
https://doi.org/10.14778/3494124.3494152
https://doi.org/10.14778/3494124.3494152
https://doi.org/10.1145/2491956.2462176
https://doi.org/10.1145/3173574.3173606
https://doi.org/10.1145/3173574.3173606
https://gawron.sdsu.edu/python_for_ss
https://doi.org/10.48550/ARXIV.1711.04422
https://doi.org/10.14778/3476249.3476281
https://coderzcolumn.com/tutorials/python/guide-to-speed-up-code-involving-pandas-dataframe-using-numba
https://coderzcolumn.com/tutorials/python/guide-to-speed-up-code-involving-pandas-dataframe-using-numba

Stefanos Baziotis, Daniel Kang, and Charith Mendis

[47] IPython: Magic Command System. 2022. https://ipython.readthedocs.io/en/

stable/interactive/reference.html#magic-command-system. Accessed: 2022-12-

09.

[48] New York (N.Y.). Taxi and Limousine Commission. 2015. TLC Trip Record

Data. https://dask-data.s3.amazonaws.com/nyc-taxi/2015/yellow_tripdata_2015-

01.csv. Accessed: 2022-12-09.

[49] Eyal Trabelsi. 2021. Practical Optimisation for Pandas. https://www.youtube.

com/watch?v=zdubYLjXHb0.

[50] Prakritidev Verma. 2017. Notebook673580193d. https://www.kaggle.com/code/

prakritidevverma/notebook673580193d. Accessed: 2022-12-09.

[51] Haojie Wang, Jidong Zhai, Mingyu Gao, Zixuan Ma, Shizhi Tang, Liyan Zheng,

Yuanzhi Li, Kaiyuan Rong, Yuanyong Chen, and Zhihao Jia. 2021. PET: Optimiz-

ing Tensor Programs with Partially Equivalent Transformations and Automated

Corrections. In 15th USENIX Symposium on Operating Systems Design and Imple-
mentation, OSDI 2021, July 14-16, 2021, Angela Demke Brown and Jay R. Lorch

(Eds.). USENIX Association, 37–54. https://www.usenix.org/conference/osdi21/

presentation/wang

[52] IPython Website. 2022. https://ipython.org/. Accessed: 2022-12-09.

[53] Solving Real-World Business Questions with Python Pandas. 2020.

https://medium.com/li-ting-liao-tiffany/solving-real-world-business-

questions-with-pandas-70ef8ef02675. Accessed: 2022-12-09.

[54] Doris Xin, Devin Petersohn, Dixin Tang, Yifan Wu, Joseph E. Gonzalez, Joseph M.

Hellerstein, Anthony D. Joseph, and Aditya G. Parameswaran. 2021. Enhanc-

ing the Interactivity of Dataframe Queries by Leveraging Think Time. CoRR
abs/2103.02145 (2021). arXiv:2103.02145 https://arxiv.org/abs/2103.02145

[55] Matei Zaharia, Reynold S. Xin, PatrickWendell, Tathagata Das,Michael Armbrust,

Ankur Dave, Xiangrui Meng, Josh Rosen, Shivaram Venkataraman, Michael J.

Franklin, Ali Ghodsi, Joseph Gonzalez, Scott Shenker, and Ion Stoica. 2016.

Apache Spark: A Unified Engine for Big Data Processing. Commun. ACM 59, 11

(oct 2016), 56–65. https://doi.org/10.1145/2934664

https://ipython.readthedocs.io/en/stable/interactive/reference.html#magic-command-system
https://ipython.readthedocs.io/en/stable/interactive/reference.html#magic-command-system
https://dask-data.s3.amazonaws.com/nyc-taxi/2015/yellow_tripdata_2015-01.csv
https://dask-data.s3.amazonaws.com/nyc-taxi/2015/yellow_tripdata_2015-01.csv
https://www.youtube.com/watch?v=zdubYLjXHb0
https://www.youtube.com/watch?v=zdubYLjXHb0
https://www.kaggle.com/code/prakritidevverma/notebook673580193d
https://www.kaggle.com/code/prakritidevverma/notebook673580193d
https://www.usenix.org/conference/osdi21/presentation/wang
https://www.usenix.org/conference/osdi21/presentation/wang
https://ipython.org/
https://medium.com/li-ting-liao-tiffany/solving-real-world-business-questions-with-pandas-70ef8ef02675
https://medium.com/li-ting-liao-tiffany/solving-real-world-business-questions-with-pandas-70ef8ef02675
https://arxiv.org/abs/2103.02145
https://doi.org/10.1145/2934664

Dias: Dynamic Rewriting of Pandas Code

A EXTENDED RESULTS

In Section 6 we focused only on ten out of the twenty random

notebooks we picked (see Section 6.1). Here, we include results for

all twenty notebooks.

Per-Cell Speedups. Figure 21 shows the cell-level speedups,

corresponding to Figure 8. The plots look almost identical, and

this is because Dias does not decelerate notebooks it does not

rewrite. Thus, since this plot includes only slowdowns or speedups

that are outside the 10% range, there is hardly any discernible

difference. Similar observations are derived from Figure 18, where

the slowdowns are still under interactive latency, i.e., 300ms.

These results further validate our hypothesis in Section 6.2. That

is, the slowdowns we observe are the result of rewriting, indepen-

dent of who performs it (in this case, Dias).

When we include all twenty notebooks, the geometric mean

speedup is 1.1× and the maximum slowdown is 28%.

Per-Notebook Speedups. In Figure 20 we show the notebook-

level speedups. This figure corresponds to Figure 9. As we men-

tioned, Dias does not rewrite code in the the ten new notebooks,

so we do not see any additional speedup. However, it remains that

the slowdowns, when Dias does not succeed, are minimal. The geo-

metric mean speedup is now 1.13× while the maximum slowdown

is 3.5%.

Comparison with Modin. In Figure 22, which corresponds to

Figure 11, our conclusions are again unaltered. modin slows down

all the ten new notebooks and it rarely scales with the number

of cores. The geometric mean and maximum speedup remain the

same (see Figure 11).

In Figure 19, which corresponds to Figure 12, we show the mem-

ory consumption of Dias, pandas, and modin, when we consider

all twenty notebooks. The results are not significantly different

for pandas and Dias. However, modin’s memory consumption be-

comes even more aggressive. We see that for one notebook, modin
consumes almost 250GB when pandas and Dias consume less than

5GB.

Cells
0.6

0.7

0.8

0.9

1.0

Re
la

tiv
e

Sp
ee

du
p

185ms 71ms

12ms 17ms 20ms 207ms 14ms
11ms 98ms 8ms 6ms

Figure 18: Corresponding to Figure 10. The conclusions are

the same. The slowdowns are within interactive latencies

(i.e., less than 300ms).

60

250

fe
ed

b-
ed

a-
hf

-si
ft

ka
gg

le-
su

rv
ey

-2
02

2
en

v-
ai-

st
ar

tu
ps

-e
da

an
im

al-
cr

os
sin

g
co

ur
se

-p
re

di
ct

ion
ad

id
as

-re
ta

il-
ed

a
st

ud
en

t-p
er

f
m

ov
ie-

re
co

m
m

pl
ay

er
-st

at
s-t

ra
ck

in
g

nl
p-

st
ud

-w
rit

-e
da

ka
gg

le-
20

22
-a

na
lys

is
da

ta
-e

xp
l-w

ith
-p

yt
ho

n
ed

a-
sp

ee
dt

es
ts

ju
st

-y
ou

-w
ait

-ri
sh

i-s
un

ak
im

db
-d

at
as

et
-e

da
sm

ar
ke

t-s
to

re
-a

na
lys

is
in

di
an

-st
ar

tu
p-

gr
ow

th
ed

a-
re

ta
il-

su
pe

rm
ar

ke
t

Notebooks

0

5

10

20

M
em

or
y+

Di
sk

 U
sa

ge
 (G

B)

Pandas
Modin-4
Dias

Figure 19: Corresponding to Figure 12.Whenwe include all 20

notebooks, we see even more aggressive memory+disk usage

from modin. Dias and pandas remain on the same scales.

ed
a-

re
ta

il-
su

pe
rm

ar
ke

t
in

di
an

-st
ar

tu
p-

gr
ow

th
an

im
al-

cr
os

sin
g

m
ov

ie-
re

co
m

m
sm

ar
ke

t-s
to

re
-a

na
lys

is
pl

ay
er

-st
at

s-t
ra

ck
in

g
nl

p-
st

ud
-w

rit
-e

da
da

ta
-e

xp
l-w

ith
-p

yt
ho

n
ka

gg
le-

20
22

-a
na

lys
is

ju
st

-y
ou

-w
ait

-ri
sh

i-s
un

ak
im

db
-d

at
as

et
-e

da
ed

a-
sp

ee
dt

es
ts

fe
ed

b-
ed

a-
hf

-si
ft

ne
tfl

ix-
da

ta
-v

iz
en

v-
ai-

st
ar

tu
ps

-e
da

ka
gg

le-
su

rv
ey

-2
02

2
co

ur
se

-p
re

di
ct

ion
ad

id
as

-re
ta

il-
ed

a
st

ud
en

t-p
er

f
sa

les
-p

re
d-

xg
bo

os
t

Notebooks

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Re
la

tiv
e

Sp
ee

du
p

Figure 20: Relative speedups on whole notebooks. We see

the same speedups as in Figure 9 with no extra substantial

slowdowns when considering all 20 notebooks.

Stefanos Baziotis, Daniel Kang, and Charith Mendis

Cells0.2
0.5
1.0
2.0
5.0

10.0
20.0
50.0

Re
la

tiv
e

Sp
ee

du
p

Figure 21: Cell-level relative speedups (excluding cells that originally ran for less than 50ms and also all the cells that got a

speedup or slowdown within the 10% range) for all 20 notebooks. Still, Dias provides significant speedups with no substantial

slowdowns (see Figure 18).

fe
ed

b-
ed

a-
hf

-si
ft

ka
gg

le-
su

rv
ey

-2
02

2
sa

les
-p

re
d-

xg
bo

os
t

en
v-

ai-
st

ar
tu

ps
-e

da
an

im
al-

cr
os

sin
g

co
ur

se
-p

re
di

ct
ion

ad
id

as
-re

ta
il-

ed
a

ne
tfl

ix-
da

ta
-v

iz
st

ud
en

t-p
er

f
m

ov
ie-

re
co

m
m

pl
ay

er
-st

at
s-t

ra
ck

in
g

nl
p-

st
ud

-w
rit

-e
da

ka
gg

le-
20

22
-a

na
lys

is
da

ta
-e

xp
l-w

ith
-p

yt
ho

n
ed

a-
sp

ee
dt

es
ts

ju
st

-y
ou

-w
ait

-ri
sh

i-s
un

ak
im

db
-d

at
as

et
-e

da
sm

ar
ke

t-s
to

re
-a

na
lys

is
in

di
an

-st
ar

tu
p-

gr
ow

th
ed

a-
re

ta
il-

su
pe

rm
ar

ke
t

Notebooks

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5

Re
la

tiv
e

Sp
ee

du
p Dias

Modin-4
Modin-8
Modin-12

Figure 22: Corresponding to Figure 11. The conclusions are similar as modin slows down all the ten new notebooks.

	Abstract
	1 Introduction
	2 Background
	2.1 Setting
	2.2 Rewriting as an alternative optimization

	3 Dias Overview
	3.1 Pandas Rewrite Rules

	4 Dias Rewrite System
	4.1 Dias Pattern Matcher
	4.2 Dias Rewriter

	5 Implementation
	5.1 IPython Integration
	5.2 Crossing Library Boundaries

	6 Evaluation
	6.1 Experimental Setup
	6.2 End-to-End vs Pandas
	6.3 Comparison with Modin
	6.4 Comparing Various Dataframe Libraries
	6.5 Understanding Dias' Performance

	7 Related Work
	8 Conclusion
	Acknowledgments
	References
	A Extended Results

